259 research outputs found

    A twelve-node hybrid stress brick element for beam/column analysis

    Get PDF
    In this paper, a hybrid stress 12-node brick element is presented. Its assumed stress field is derived by first examining the deformation modes of a geometrically regular element and then generalizing to other element configurations using tensorial transformation. The total number of stress modes is 30 which is minimal for securing the element rank. To reduce the computational cost associated with the fully populated flexibility matrix, the admissible matrix formation is employed to induce high sparsity in the matrix. Popular beam bending benchmark problems are examined. The proposed elements deliver encouraging accuracy.postprin

    A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

    Get PDF
    A hyperbolic Lindstedt-Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy. © 2009 The Chinese Society of Theoretical and Applied Mechanics and Springer-verlag GmbH.postprin

    The incremental harmonic balance method for nonlinear vibration of axially moving beams

    Get PDF
    In this paper, the incremental harmonic balance (IHB) method is formulated for the nonlinear vibration analysis of axially moving beams. The Galerkin method is used to discretize the governing equations. A high-dimensional model that can take nonlinear model coupling into account is derived. The forced response of an axially moving strip with internal resonance between the first two transverse modes is studied. Particular attention is paid to the fundamental, superharmonic and subharmonic resonance as the excitation frequency is close to the first, second or one-third of the first natural frequency of the system. Numerical results reveal the rich and interesting nonlinear phenomena that have not been presented in the existent literature on the nonlinear vibration of axially moving media. © 2004 Elsevier Ltd. All rights reserved.postprin

    Popular benchmark problems for geometric nonlinear analysis of shells

    Get PDF
    In most, if not all, of the previous work on finite element formulation and nonlinear solution procedures, results of geometric nonlinear benchmark problems of shells are presented in the form of load-deflection curves. In this paper, eight sets of popularly employed benchmark problems are identified and their detailed reference solutions are obtained and tabulated. It is hoped that these solutions will form a convenient basis for subsequent comparison and that the tedious yet inaccurate task of reconstructing data points by graphical measurement of previously reported load-deflection curves can be avoided. Moreover, the relative convergent difficulty of the problems are revealed by the number of load increments and the total number of iterations required by an automatic load incrementation scheme for attaining the converged solutions under the maximum loads. © 2003 Elsevier B.V. All rights reserved.postprin

    A stabilized eighteen-node solid element for hyperelastic analysis of shells

    Get PDF
    The objective of the present study is to develop a solid element for large deformation analysis of hyperelastic shell structures. To attain high computational efficiency and annihilate shear and membrane lockings, a hybrid-strain stabilization approach is adopted. To overcome the thickness locking of the element, the enhanced assumed thickness strain modes are incorporated. Starting from the virtual work principle and a weak form that enforces the equality of the hybrid-strain and the strain arising from the displacement and the enhanced assumed strain, an eighteen-node element for large deformation analysis of hyperelastic shells is developed. The salient feature of the present element for higher computational efficiency is that the element uses only the second-order quadrature for integration along the two in-plane natural coordinates and the stabilization vectors can be formed without using any integration loops. Efficacy of the element is illustrated by popular benchmark problems. © 2003 Elsevier B.V. All rights reserved.postprin

    Prevalence of drugged drivers among non-fatal driver casualties presenting to a trauma centre in Hong Kong

    Get PDF
    OBJECTIVE: To investigate the prevalence and characteristics of abusive drug exposure among non-fatal motor vehicle driver casualties presenting to a designated trauma centre in Hong Kong. DESIGN: Cross-sectional study. SETTING: Designated trauma centre/regional accident and emergency department in Hong Kong. SUBJECTS: Non-fatal motor vehicle driver casualties who presented to the trauma centre from 1 January 2007 to 31 December 2007. MAIN OUTCOME MEASURES: Screening of abusive drug exposure using commercial bedside urine immunoassay kits. RESULTS: Drug screening was performed in 395 injured drivers, 10% of whom tested positive for the drugs of interest. Ketamine was the most commonly detected abusive substance (found in 45% of the subjects). A significantly higher proportion of young drivers (aged <25 years) screened positive (odds ratio=2.3; 95% confidence interval, 1.0-5.2; P=0.04), with the rate being 21%. The presence of these drugs in urine was related to the time of occurrence of the crash; those occurring between midnight and dawn revealed a trend towards a higher proportion of casualties testing drug-positive (odds ratio=2.2; 95% confidence interval, 0.9-5.3; P=0.07). There were no significant differences in the frequency of persons testing positive for the screened drugs with respect to gender, class of motor vehicle driven, or the day of the week on which the crash occurred. CONCLUSIONS: The prevalence of drugged driving among non-fatal casualties in our series of Hong Kong drivers was 10%. The frequency of such drivers testing positive for drugs was significantly higher in persons aged less than 25 years. These findings indicate a need to amend existing laws and implement on-site drug screening for suspected drugged drivers.published_or_final_versio

    Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior

    Get PDF
    Background To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. Results Genetic and laser ablation analysis, in conjunction with behavioral assays were used to determine neurotransmitters, receptors, neurons and muscles required for the regulation of male tail posture. We showed that proper male tail posture is maintained by the coordinated activity of opposing muscle groups that curl the tail ventrally and dorsally. Specifically, acetylcholine regulates both ventral and dorsal curling of the male tail, partially through anthelmintic levamisole-sensitive, nicotinic receptor subunits. Male-specific muscles are required for acetylcholine-driven ventral curling of the male tail but dorsal curling requires the dorsal body wall muscles shared by males and hermaphrodites. Gamma-aminobutyric acid activity is required for both dorsal and ventral acetylcholine-induced curling of the male tail and an inhibitory gamma-aminobutyric acid receptor, UNC-49, prevents over-curling of the male tail during mating, suggesting that cross-inhibition of muscle groups helps maintain proper tail posture. Conclusion Our results demonstrated that coordination of opposing sex-specific and core muscle groups, through the activity of multiple neurotransmitters, is required for regulation of male tail posture during mating. We have provided a simple model for regulation of male tail posture that provides a foundation for studies of how genes, molecular pathways, and neural circuits contribute to sensory regulation of this motor behavior

    A particle swarm optimization-based algorithm for finding gapped motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying approximately repeated patterns, or motifs, in DNA sequences from a set of co-regulated genes is an important step towards deciphering the complex gene regulatory networks and understanding gene functions.</p> <p>Results</p> <p>In this work, we develop a novel motif finding algorithm (PSO+) using a population-based stochastic optimization technique called Particle Swarm Optimization (PSO), which has been shown to be effective in optimizing difficult multidimensional problems in continuous domains. We propose a modification of the standard PSO algorithm to handle discrete values, such as characters in DNA sequences. The algorithm provides several features. First, we use both consensus and position-specific weight matrix representations in our algorithm, taking advantage of the efficiency of the former and the accuracy of the latter. Furthermore, many real motifs contain gaps, but the existing methods usually ignore them or assume a user know their exact locations and lengths, which is usually impractical for real applications. In comparison, our method models gaps explicitly, and provides an easy solution to find gapped motifs without any detailed knowledge of gaps. Our method allows the presence of input sequences containing zero or multiple binding sites.</p> <p>Conclusion</p> <p>Experimental results on synthetic challenge problems as well as real biological sequences show that our method is both more efficient and more accurate than several existing algorithms, especially when gaps are present in the motifs.</p

    Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films

    Get PDF
    In this work, bipolar resistive switching characteristics were demonstrated in the Pt/ZnO/Pt structure. Reliability tests show that ac cycling endurance level above 106 can be achieved. However, significant window closure takes place after about 102 dc cycles. Data retention characteristic exhibits no observed degradation after 168 h. Read durability shows stable resistance states after 106 read times. The current transportation in ZnO films is dominated by the hopping conduction and the ohmic conduction in high-resistance and low-resistance states, respectively. Therefore, the electrical parameters of trap energy level, trap spacing, Fermi level, electron mobility, and effective density of states in conduction band in ZnO were identified
    corecore